If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5y^2+5y=0
a = -5; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-5)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-5}=\frac{-10}{-10} =1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-5}=\frac{0}{-10} =0 $
| 3s2+30s+50=0 | | -4x+10=-5x+15 | | 2-3+5(2x+15)=36 | | 9n^2+8n=0 | | 3x-8=5x+1 | | -2=n=3 | | E^(2x)=1/8 | | 6x-10x+10=-5x+15 | | w+3/4=24 | | -4x+9=-5x+15 | | .5x+4=2/3x-2 | | -4x+11=-5x+15 | | 10k-1=6k-43 | | 2x3-6x2-8x+24=0 | | 2x+1=2(2x-3) | | r^2+8r+30=0 | | 4x2+4+-5x+x+-2x2+8=0 | | 3(x-2)-4(x-5)-44=6(x-5)-7x | | 4×+5+3x=65 | | 3x^2+13x-28=2x^2+2 | | F(x)=(5x+7)(4-3x) | | x+(x/2)=22 | | k÷4=2 | | 4(4s+2)=56 | | (x+3)=18-2 | | 8+-6y+6y=8 | | 9x+40=83 | | 3x=7x-28-4 | | 4+55=44x+12 | | y−14= 4 | | -12/u=3 | | 4 = 12p |